Claytonia rubra, what is that? pt. II

Hi, all — I’ve decided to switch things up and simply chat with you a bit about a topic that has apparently been the most popular on my blog so far: Claytonia rubra (Howell) Tidestrom. You may find yourself now asking the question, “Claytonia rubra, what is that?” Well, there’s a blog post for that.

IMG_2004

Claytonia rubra photographed while flowering, plants growing abundantly in the Pinyon-Juniper belt on the Modoc Plateau, northern California.

But Claytonia rubra may be more than meets the eye, especially if you’ve been paying close attention to it where it grows in different areas, or if you’ve been so lucky as to see it from across its entire geospatial distribution. Let’s think about this for a minute, considering first the global range of Claytonia rubra.

It is across this wide and ecologically diverse distribution, north to south from British Columbia to near (probably in) Mexico, and west to east from the San Francisco Bay Area to the Black Hills of South Dakota, that the annual Claytonia rubra displays a seriously diverse range of morphologies. Is it phenotypic plasticity? Is it local adaptation? Is it speciation? Is it hybridization? Is it some mix of all of these? Claytonia rubra is a tough cookie to crack!

IMG_2270

Claytonia rubra photographed while flowering on the Modoc Plateau, northern California. Notice the largest leaf blades (outermost in the rosette) are among the first to have emerged in early development — These lay flat on the ground surface (or nearly so)

Starting with identification, something I’ve found to be fairly characteristic of Claytonia rubra is that its older leaves (outermost in the rosette of basal leaves), which often have the largest blades, tend to lay flat on the ground — some close relatives (like certain subspecies of C. perfoliata) do this too, or something like it, so don’t take this for a smoking gun. Furthermore, some races of C. rubra do not have basal rosettes that lay flat, rather they are elevated ever so slightly above the forest floor. Don’t you just love those kinds of dichotomous key breaks? — Is is erect to ascending (sometimes spreading), or ascending to spreading (sometimes erect)?! — Still, if you see something in the mountains of western North America like in the picture below, where the outermost (older) leaves in the basal rosette lay flat, appressed to the ground, you can be fairly confident that you are looking at something that is quite appropriately called Claytonia rubra.

IMG_5856

Vegetative Claytonia rubra photographed at the Tejon Ranch in the Tehachapi Mountains, southern California.

For effect, compare the leaves of Claytonia rubra plants in the above picture with the leaves of the plant in the picture immediately below, C. perfoliata, both of which were photographed at the Tejon Ranch in somewhat close proximity (either side of the same mountain ridge) — see how Claytonia perfoliata (below) tends to elevate its leaves off the ground?

IMG_5868

Vegetative Claytonia perfoliata photographed at the Tejon Ranch in the Tehachapi Mountains, southern California.

The characteristic of Claytonia rubra have low-growing leaves seems pretty useful, until you come across a putative lineage (sometimes in the same mountain range!) that looks like the plant below — these plants have distinctly erect / ascending leaves, although the proximal portion of their petioles are still appressed to the ground. This gives the leaves a sort of ‘S-curved’ look. Believe it or not, these are another subspecies of Claytonia rubra!

IMG_7912

Claytonia rubra photographed while flowering at the Tejon Ranch in the Tehachapi Mountains, southern California.

This is a time where it comes in handy to know a few other characters that, when used in combination, can help to distinguish Claytonia rubra from similar-looking miner’s lettuce.

IMG_7434

Classic, beet-colored (reddish to purplish) undersides of basal leaves of Claytonia rubra. Whenever possible, try to observe this character in multiple plants — Generally, the basal leaves should be deep green adaxially and reddish abaxially in Claytonia rubra.

For example, the plants photographed above demonstrate another conspicuous characteristic of most lineages of Claytonia rubra — betalain pigmentation is generally evident on the abaxial (lower) surfaces of the basal (and sometimes cauline) leaves, giving them a purple/reddish appearance. This is a sort of ‘no-brainer’ character I tend to point people towards, but just as with the characteristic basal leaf orientation I mentioned above, this morphological character doesn’t always hold true. Plants love exceptions WAY MORE than rules: in this particular case there appears to be an environmental element to variation in Claytonia betalain pigmentation, as evidenced by some unpublished observations I have made in common garden experiments involving C. perfoliata, C. rubra, and some perennials in the C. “peirsonii” complex.

2013-04-28 11.41.08

Variegation on foliage characteristic of some lineages of Claytonia rubra.

OK, so the leaves are sort of laying flat, and kinda red undeneath, but you’re still not totally convinced you are looking at Claytonia rubra and not some other similar-looking miner’s lettuce. Well, you’re in luck — I’ve noticed that many races of Claytonia rubra tend to have the look of variegated leaves, possibly related to a breaking up of the cuticle during development. If you see something like the plant in the picture(s) above, where there are variegated streaks on the leaves of a Claytonia, it is VERY likely that you are indeed looking at Claytonia rubra.

2013-04-28 11.34.01

[From left to right, Claytonia parviflora, C. perfoliata, and C. rubra!] Multiple miner’s lettuce species growing in sympatry in Mill Creek Canyon, San Bernardino Mountains, California.

IF you still can’t be sure about which Claytonia you are looking at — just ask me! That’s what I am here for…

Advertisement

And now something different…

It has been a while since I blabbered about the cotyledons of Claytonia, but I want to let you all in on something I find VERY interesting…IMG_1521… so maybe we should start with a survey, to see what you think. How many cotyledons do you think Claytonia have? Keep in mind, they are dicots.

Claytonia saxosa seedlings2013-12-01 12.10.10If you guessed that Claytonia have 2 cotyledons, you’re right… but you’re not the only one that is right. Technically, those of you that guessed Claytonia have only 1 cotyledon are also correct — that’s right, there is in fact a group of dicots with only 1 cotyledon (probably several, but that question exceeds the scope of this blog post). Claytonia Section Claytonia, otherwise known as the tuberous perennials, lack a second cotyledon present in other species of Claytonia (and all of their closest relatives). To me, this is just another reason why you should believe that Claytonia is the whackiest group of plants this side of the Mississippi River. 😉

IMGP9244So who cares, there has been a loss of one of the cotyledons in this group of plants. One time only evolution, and now these plants simply can’t recover that lost cotyledon — I’m over it… right? WRONG! There is something fishy going on here, and it has to do with a certain caudicose perennial I have mentioned before: Claytonia megarhiza (pictured below).

IMG_4012IMG_4025You can see from the second image (the photo immediately above) that Claytonia megarhiza clearly has two cotyledons, not one like the tuberous, perennial Claytonia species I mentioned before. Thus, you’d expect that this species is more closely related to those other Claytonia that have two cotyledons, right? Well…

Print Trees PreviewAbove is a preliminary phylogenetic tree that I presented at the Botanical Society of America Meeting this year in Edmonton, Alberta, Canada. This tree has been developed from ~500 single nucleotide polymorphisms isolated from the nuclear genome of all of the samples included (using ddRADseq). You can see from the tree that the caudicose perennial C. megarhiza (indicated by [morphologically similar, but anatomically quite different] cartoon carrots ) clearly has a close association with the tuberous, perennial Claytonia, albeit the exact area in the tree where they will stabilize is still yet to be determined. Without question, Claytonia megarhiza is nested somewhere in this clade of otherwise tuberous, perennial Claytonia.

So how did C. megarhiza find itself with 2 cotyledons while all of its closest relatives (including those diverging away from the lot much earlier in evolutionary history) have only 1? If you have the answer… I would love to hear it from ya! From my perspective, it is a question that is ‘to be determined’ but I am hopeful that my dissertation will change things. 😉

Oops, that took embarassingly long: UPDATE on what’s new with western Claytonia

IMG_0850First off (technically second, after the eye candy above), I need to announce that my research on Claytonia (Montiaceae) has been recently funded [yay!] by the National Science Foundation. You can see the abstract here for #DEB1502085:

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1502085

Second (yes, I know, technically third), we should play my favorite game: compare the above eye candy with the below ridiculously beautiful [spring] beauty… SAME? or different. 😉

IMG_2978Now before you answer to yourself, consider that the Claytonia in the above two pictures are considered in the current taxonomy to be the same as the plants in the below picture, all being C. lanceolata [for now]. IMG_2834Check out the variation in those leaves!!! Who cares about the flowers, right? No way…IMG_0865IMG_7563IMG_2825The three photos immediately above correspond respectively with the same three putative taxa [let’s call them operational taxonomic units] in the first three pictures of this blog post. So? SAME or different? Feel free to vote at the bottom, and I welcome any feedback or discussion — I can’t say it all in 140 characters or less.

Third [ok, let’s stop with the sequential nonsense], I took an epic trip across California, Nevada and Oregon during the spring months of 2015 as part of #DEB1502085. While on this trip, I photographed new, mind-boggling [taxonomically speaking], tuberous Claytonia. Almost immediately after that, I took another most epic trip across California, Nevada, Utah, and Colorado (with guest appearances in Arizona and Wyoming) with ‘Los Caryophylleros’. Let’s just say, I can’t wait to get my new morphological and molecular data (RADSeq X 2) up to speed…

Lastly [HA! I win!], I’ll finish this [short] commentary with what has been the most difficult collection of photos I’ve ever had to select from for the purpose of sharing, then I need to finish preparing for presentations at BOTANY and the Caryophyllales meetings…

IMG_1648IMG_1815IMG_2120IMG_2266IMG_2280IMG_2297IMG_2585IMG_2598IMG_2696IMG_2821IMG_2944IMG_2985IMG_3223IMG_3256IMG_3520IMG_3578IMG_3582IMG_3665IMG_3728IMG_3756What a wild ride!!!

Hybridization — are generalist pollinators the key to success?

I’ve been on a bit of a rant lately concerning hybridization in plant species complexes, which recently resulted in my last post suggesting hybridization could be a potential ‘solution’ to the problem of an ever-changing climate. I want to dig a little deeper now and ask the questions — can generalist pollinators have anything to do with the maintenance of a generalized floral form in Claytonia? If so, can this indirectly act as a selective force for increased hybridization among distantly (and closely) related species? If you have seen the ‘face shots’ from a recent ‘Spring Beauty Pageant‘ than you know what I’m talking about. Maybe you’ve even suggested to a friend, because Claytonia grow like weeds where you are from, that you believe there to be little variation in floral form among species in the genus. I’d agree with you, to a certain extent… but then again, maybe there is so much intra-population variation in floral morphology (coloration, petal shape) that we are blind to see the true pattern of differentiation in floral form among closely related taxa. I’ve touched upon the subject of within-population variation of the flowers of one member of the C. “peirsonii” complex from the southern Sierra Nevada, but now I want to expand on this subject with photographs taken within a single population of C. lanceolata sensu lato on the Great Continental Divide in Montana. As you can easily tell from the first picture below, in which all of the white spots are Claytonia flowers, it is not difficult to conduct this sort of ‘experiment’ yourself. In other words, it is easy to get a lot of face-on photographs of Claytonia flowers because they occur in extremely dense populations. This spring, try to see how much your favorite Claytonia varies in its floral form — you may be surprised at what you find!IMG_8497IMG_8570IMG_8449IMG_8582 IMG_8453IMG_8458IMG_8477IMG_8478IMG_8531IMG_8547IMG_8516     Keep in mind that all of the above pictures are of plants that occur in a single population of C. lanceolata sensu lato on the Great Continental Divide in Montana. As evidenced by the last photograph, even merosity can go haywire from time to time. If I showed you just that last picture, you might even confuse the plants for Lewisia. That is a lot of variation! Are these hybrid plants of C. lanceolata (which has retuse petal apices) crossed with another species in the area with entire petals? Good question! Let me get back to you on that one…

All I know is that multiple Claytonia species can occur in sympatry, and intermediate forms can be found in those areas. This is especially true of the annual species of Claytonia. I haven’t observed putative hybrids among the annuals (i.e., the miner’s lettuces) and tuberous perennials (i.e., C. lanceolata species complex), although I have observed them sharing pollinators in southern California. Pictured below are soft-wing flower beetles (Melyridae) visiting both C. rubra (section Limnia, first picture below) and C. “peirsonii (section Claytonia, second picture below) at the same location on the same day in the southern Sierra Nevada, California. You might remember from one of my very first posts: these pollen eaters are quite effective pollinators.

IMG_5457 IMG_5402Too many questions for a single dissertation to address, but I’ll see what I can do! 😉

Yukon — too much good stuff!

Buh5XpHCAAQssob

Cheers from the Ogilvie Mountains!

Hey, all — I have returned from the Yukon Territory and I want to share with you at least SOME of the highlights regarding my fieldwork there. Ingrid Jordon-Thaden and I summarized most of it in our recent post on Experiment.com (click here to see the lab note), but I wasn’t able share all of the pictures that I wanted to share there — my administrative privileges on Claytonia.org allow me to expand a bit here 😉

So what did I see, exactly? Oh gosh, I collected a fair amount of Silene, a few Androsace septentrionalis seeds and vouchers, at least a few Boechera, and I even grabbed an endemic Claytonia to make the trip VERY worthwhile. Claytonia ogilviensis (two pictures below) was my main target, so I was very glad that we were able to collect it. I found at least one population, but I also got the opportunity to sample from some recent herbarium specimens where C. ogilviensis has been collected outside of the range from which it was originally described, each with a slightly different morphology (and geology) to boot — I am VERY excited to see how this all fits into the phylogeny I am developing (with help from collaborators) for Claytonia Section Claytonia.

IMG_9166

Tuber from putatively old individual of Claytonia ogilviensis in the Ogilvie Mountains, Yukon Territory, Canada.

IMG_9158

Basal leaf (left center) and remnants of flowering stem (right center) of Claytonia ogilviensis in the Ogilvie Mountains, Yukon Territory, Canada.

Based on my recent observations in the field, and from scanning herbarium specimens collected all across western North America, I can tell why many people have suggested that Claytonia ogilviensis (pictured above) may be closely related to C. umbellata (pictured below). It doesn’t help that I am not EXACTLY sure about who the REAL C. umbellata is, considering I collected four distinct genotypes (each with their own distinct morphologies) all within about 20 air miles of the vaguely described type locality. To make matters worse (read about it here), my collaborator has found another distinct lineage of C. umbellata in eastern Oregon that is nearly identical (genetically) to the Ogilvie Mountains endemic (C. ogilviensis) that I just collected… Claytonia is a tough cookie to crack!

IMG_4677

Tuber from individual of Claytonia umbellata in the Diamond Mountains, Nevada.

IMG_4680

Basal leaf of Claytonia umbellata from the Diamond Mountains, Nevada.

IMG_5228

Basal and cauline leaves of Claytonia umbellata from the Pine Nut Mountains, Nevada.

Aside from collecting the narrow endemic Claytonia ogilviensis in the Yukon Territory, I also found an interesting population currently treated as C. tuberosa (pictured below) in the area of Keno Hill. In my most recent nrITS phylogeny, it appears that these plants may be more closely related to samples of C. multiscapa from the Rocky Mountains than they are to other samples of C. tuberosa collected just to the west in Alaska — I don’t yet have chloroplast data to support this relationship (the Idaho area C. multiscapa sequences are from GenBank).

IMG_9058

Face-view of flower of Claytonia tuberosa s.l. from the top of Keno Hill, Yukon Territory, Canada.

IMG_9035

Claytonia tuberosa s.l. photographed on top of Keno Hill, Yukon Territory, Canada.

Lastly, I got to see and collect a VERY beautiful Claytonia in the Kluane National Park, a member (and my first sample) of Section Rhizomatosae Claytonia sarmentosa (photographed below). This rhizomatous perennial seems to really prefer talus slopes, not unlike C. ogilviensis, C. umbellata, and the C. “peirsonii” complex.

IMG_9239

Face-view of flower of Claytonia sarmentosa from the Kluane Ranges, Yukon Territory, Canada.

IMG_9236

Claytonia sarmentosa photographed on the King’s Throne Trail, Kluane Ranges, Yukon Territory, Canada.

It was a great trip, but I’m glad to be home — with school about to start, and another spring season just around the corner, it is time to REALLY get some work done!!!

Up Next = Molecular lab + Herbarium work.

It has been a while, but I’ve been busy…

photoIMG_8879Hey, all — I wanted to share a short post with you, some links that detail my activities in the field over the last two weeks in Idaho and Montana. I’ve been on the hunt for Claytonia, Silene, Boechera and Androsace in alpine areas across these two states, including my new favorite mountain range, the Sawtooth Range (pictures above). At the end of this trip in Idaho and Montana I got my first ever glimpse of the alpine Claytonia megarhiza (pictures below) — I’m beginning to think I should have selected that species for a more thorough investigation… I suppose there is life after dissertation, so maybe this can be my next problem child. 😉

IMG_8952IMG_8954My collaborator, Ingrid Jordon-Thaden, and I have been to some pretty spectacular places (see links below), but it is only going to get better (I think) when we head north to the Yukon (Canada) following the 2014 Botany Conference. I look forward to keeping you all in the loop!

first update: https://experiment.com/u/0gYspQ

second update: https://experiment.com/u/pdFliA

third update: https://experiment.com/u/itzIEA

Beginning of the end of Silene verecunda sensu lato

Hey, all — I thought I would share with you that my recent manuscript with colleagues (Diana D. Jolles and Heath A. Bartosh) describing a new species of Silene (Caryophyllaceae) has finally been published! You can access our article here, or the whole issue is here. It is a very special issue for the California Fish and Game Journal, #100, and the first ever all botany issue for the journal — some really GREAT articles in there that are worth reading, including an introduction by Governor Jerry Brown. Neat Stuff!

combined_finalAs always, I am interested to know what you think about this topic — the Silene verecunda problem is VERY complex, but fortunately the taxonomy isn’t.

Floral morphology in Claytonia: How much variation is ‘normal’ for a species?

Ok, so you may remember this recent post, where I asked for interested people to send me pictures of as many flowers as they could photograph…

The premise is simple: How much variation is considered the ‘normal’ or ‘typical’ amount of variation for a species? How much is typical in terms of petal shape, size, and color for individuals in a given population of tuberous perennial Claytonia?! My collaborators and I have noticed quite a bit of variation among populations of different species, but what may be even more interesting is the amount of variation within populations. It might bend your brain the next time you kneel down and take a look around at the tuberous perennial Claytonia blooming in your area (right now!!!)… Better yet, take a picture of 50-100 different flowers from directly facing the flowers (trying to center the gynoecium in the flower as best as possible). Compare all your photos, or send them my way. We’ll get to the bottom of this!

Enter stage left as ‘proof of concept’, a member of the C. “peirsonii” complex from the southern Sierra Nevada — all of the below pictures are from different flowering individuals within a single population, taken on the same day within about 45 minutesIMG_5421 IMG_5418  IMG_5404Note the visitors above: an ichneumonoid wasp (likely a parasitoid braconid) on the left, and a soft-winged flower beetle (Melyridae) on the right. We saw these same beetles last year, and I’ve also mentioned them in the ‘who’s pollinating Claytonia?‘ series — special thanks to Dr. Emile Fiesler for help with the identifications!IMG_5432IMG_5398IMG_5382IMG_5387IMG_5324IMG_5331IMG_5396The variation is crazy, right?!

IMG_5340I really need to get a new ‘cutest Claytonia‘ contest going soon…

Evolution of Promiscuity in Angiosperms: Microryza Project

2013-06-23 17.53.12Hey all ya’ll! I am floating my research project on a crowd-sourced ‘kickstarter’ website in hopes to raise $20K for my research and I need your help to get the word out to everyone (feel free to RE-POST this message). I am posting to let you know that you have the opportunity to contribute any amount of funding to my research on rare, predominantly alpine plants and the effects of climate change on the montane flora of California and more broadly throughout North America. No donation will be charged unless I reach my goal, and all donations are tax-deductible!

My project page can be found here, and will be made publicly available next week for exactly 30 days of fundraising:

Evolution of Promiscuity in Angiosperms

I’d be happy to provide more information for anyone, and obviously would acknowledge all contributions large and small on my website and in publications. Thanks at least for listening!

I need your help to get the word out to EVERYONE so please RE-POST, Re-Tweet, Instagram, Facebook it, whatever you can do to help!