And now something different…

It has been a while since I blabbered about the cotyledons of Claytonia, but I want to let you all in on something I find VERY interesting…IMG_1521… so maybe we should start with a survey, to see what you think. How many cotyledons do you think Claytonia have? Keep in mind, they are dicots.

Claytonia saxosa seedlings2013-12-01 12.10.10If you guessed that Claytonia have 2 cotyledons, you’re right… but you’re not the only one that is right. Technically, those of you that guessed Claytonia have only 1 cotyledon are also correct — that’s right, there is in fact a group of dicots with only 1 cotyledon (probably several, but that question exceeds the scope of this blog post). Claytonia Section Claytonia, otherwise known as the tuberous perennials, lack a second cotyledon present in other species of Claytonia (and all of their closest relatives). To me, this is just another reason why you should believe that Claytonia is the whackiest group of plants this side of the Mississippi River. 😉

IMGP9244So who cares, there has been a loss of one of the cotyledons in this group of plants. One time only evolution, and now these plants simply can’t recover that lost cotyledon — I’m over it… right? WRONG! There is something fishy going on here, and it has to do with a certain caudicose perennial I have mentioned before: Claytonia megarhiza (pictured below).

IMG_4012IMG_4025You can see from the second image (the photo immediately above) that Claytonia megarhiza clearly has two cotyledons, not one like the tuberous, perennial Claytonia species I mentioned before. Thus, you’d expect that this species is more closely related to those other Claytonia that have two cotyledons, right? Well…

Print Trees PreviewAbove is a preliminary phylogenetic tree that I presented at the Botanical Society of America Meeting this year in Edmonton, Alberta, Canada. This tree has been developed from ~500 single nucleotide polymorphisms isolated from the nuclear genome of all of the samples included (using ddRADseq). You can see from the tree that the caudicose perennial C. megarhiza (indicated by [morphologically similar, but anatomically quite different] cartoon carrots ) clearly has a close association with the tuberous, perennial Claytonia, albeit the exact area in the tree where they will stabilize is still yet to be determined. Without question, Claytonia megarhiza is nested somewhere in this clade of otherwise tuberous, perennial Claytonia.

So how did C. megarhiza find itself with 2 cotyledons while all of its closest relatives (including those diverging away from the lot much earlier in evolutionary history) have only 1? If you have the answer… I would love to hear it from ya! From my perspective, it is a question that is ‘to be determined’ but I am hopeful that my dissertation will change things. 😉

Advertisements

Oops, that took embarassingly long: UPDATE on what’s new with western Claytonia

IMG_0850First off (technically second, after the eye candy above), I need to announce that my research on Claytonia (Montiaceae) has been recently funded [yay!] by the National Science Foundation. You can see the abstract here for #DEB1502085:

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1502085

Second (yes, I know, technically third), we should play my favorite game: compare the above eye candy with the below ridiculously beautiful [spring] beauty… SAME? or different. 😉

IMG_2978Now before you answer to yourself, consider that the Claytonia in the above two pictures are considered in the current taxonomy to be the same as the plants in the below picture, all being C. lanceolata [for now]. IMG_2834Check out the variation in those leaves!!! Who cares about the flowers, right? No way…IMG_0865IMG_7563IMG_2825The three photos immediately above correspond respectively with the same three putative taxa [let’s call them operational taxonomic units] in the first three pictures of this blog post. So? SAME or different? Feel free to vote at the bottom, and I welcome any feedback or discussion — I can’t say it all in 140 characters or less.

Third [ok, let’s stop with the sequential nonsense], I took an epic trip across California, Nevada and Oregon during the spring months of 2015 as part of #DEB1502085. While on this trip, I photographed new, mind-boggling [taxonomically speaking], tuberous Claytonia. Almost immediately after that, I took another most epic trip across California, Nevada, Utah, and Colorado (with guest appearances in Arizona and Wyoming) with ‘Los Caryophylleros’. Let’s just say, I can’t wait to get my new morphological and molecular data (RADSeq X 2) up to speed…

Lastly [HA! I win!], I’ll finish this [short] commentary with what has been the most difficult collection of photos I’ve ever had to select from for the purpose of sharing, then I need to finish preparing for presentations at BOTANY and the Caryophyllales meetings…

IMG_1648IMG_1815IMG_2120IMG_2266IMG_2280IMG_2297IMG_2585IMG_2598IMG_2696IMG_2821IMG_2944IMG_2985IMG_3223IMG_3256IMG_3520IMG_3578IMG_3582IMG_3665IMG_3728IMG_3756What a wild ride!!!

Here today, gone tomorrow — Doyle and Doyle get a taste of the Desert Southwest Claytonia

IMG_5134IMG_5178Remember the above, beautiful plants photographed flowering a little over two weeks ago in Nevada? If not, see my previous blog post, ¡Holy frijoles!

Well, almost two weeks later Claytonia umbellata is apparently no longer flowering atop Peavine Peak outside of Reno — more snow has come (see below). These poor little guys are now packing on the pounds (and buds) getting very little exercise while they sit and wait for the warmth of a spring (beauty) day. It will come soon. In fact, I’d wager those little monsters are blooming now, as I’m writing from the comfort of my home in southern California. After all, the photographs below are from April 2nd, 2014, and these plants (desert Claytonia) are über-ephemeral. IMG_5739I’m so cold, I couldn’t possibly think of flowering right now…

Dr. Jeff Doyle, Cornell University, searching for the elusive flowering Claytonia.

Dr. Jeff Doyle (Cornell University) trying to stay warm while searching for the elusive flowering Claytonia.

Well, this disappointment came AFTER a morning of heartbreak — searching seemingly suitable habitat without finding plants. Do I really have a good idea of what suitable habitat is? Are they even capable of dispersing here? Let’s back up for a second…

IMG_5221Above is a picture of a location where I collected another population of Claytonia umbellata in the Pine Nut Mountains at Minnehaha Canyon on my spring break trip nearly two weeks ago — the talus I know and love, seemingly characteristic of the Desert Southwest Claytonia. Bearing that in mind, when I see a habitat like the one above, or the one pictured below, and I am very near the type locality of Claytonia umbellata in the area of Mt. Davidson Pass (Nevada), I have to stop and take a look, right? IMG_5724WRONG! There aren’t any Claytonia there (above), not even a C. rubra or C. parviflora ssp. viridis to cheer me up for making a bad call — Nothing! But it looks so good, and the rocks are the same as at Minnehaha Canyon… sample size of one strikes again with these guys. Ever heard the phrase, to each his own? Well, I’m beginning to think these Claytonia take that to the extreme. They are not very good at getting around (dispersal), or they have very picky palettes… or both.

We have just GOT to find some flowering Claytonia, I promised Jeff and Jane! The Doyles joined me for this trip (and to give a seminar at RSABG later), flying all the way out from New York. The Doyles have A LOT of experience with eastern Claytonia, but this western stuff was pretty new for them. We sat in the car on top of Peavine Peak thinking (and not eating) — what were we going to do? That’s it! I know another place we can try, but its further north…

IMG_5772Pictured above, a talus slope of volcanic rocks in the Pah Rah Range near Pyramid Lake, Nevada. Oh no! The sun will be setting in a few hours! We can try to climb that slide and run the risk of not finding any plants, or we can try to race up the canyon to get to a known locality before dark sets in… Jeff and Jane agree, it’ll be worth giving this hillside a good look over before we continue up the canyon.

IMG_5763And thank goodness we did — this area of talus was rich with numerous plants of Claytonia umbellata! We found a new locality for Claytonia umbellata, approximately one mile away from another known locality in the Pah Rah Range AND it was the large-leaved plants, like those seen in the Pine Nut Mountains at Minnehaha Canyon. Compare those to the plants from Peavine Peak (top of page), which happen to grow on different volcanic rocks!

Déjà vu — a feeling of having already experienced the present situation, independent of whether you have or have not experienced the situation or something like it… No idea what I’m talking about? See my “Claytonia rocks!”post — click here for more background information.

I still was unable, though, to fulfill my promise to Jeff and Jane Doyle — we had not yet found flowering Claytonia. There was one more chance to find flowering plants while in Nevada looking for Claytonia umbellata.This was a revisit for me, to a site in the Pine Nut Mountains where I was unable to locate a population on my previous visit. This population is near Bismark Peak, and as far as I can tell, it has not been documented by any herbarium specimen. I found out about the population by scouting CalPhotos for pictures of Claytonia — this population had been photo documented but never vouchered. I want to give a shout out to Larry Crawford, for giving me enough information to find some plants! I was not able to relocate Larry’s ‘secret patch’ of Claytonia umbellata atop Bismark Peak, but the Doyles and I were able to find a new population along the same ridgeline!

IMG_5782Believe it or not, and I’m sure to Larry’s delight, the plants here occur in a really unique habitat — I’m still working on the rock identification (volcanic, or sedimentary?). Crazy thing is, this Claytonia umbellata population consists of only a few plants scattered about in the cracks of the vertically oriented rocks (presumably oriented as such due to frost heaving) — they don’t seem to occur with the other rocks oriented horizontally.

IMG_5786Isn’t that just bizarre! but there were STILL no flowering Claytonia to be found… I was running out of options — a revisit to the population near the Devil’s Punchbowl County Park on Saturday before Jeff and Jane’s departure seemed the most obvious choice. Rather than visiting the Devil’s Backbone (where recent snows may have set plants back from flowering), I decided we should visit a lower elevation site. Would there be flowering Claytonia hanging on at the Devil’s Punchbowl, where I observed plants flowering on February 15th, 2014? (click here to see post, “Yep, it’s Claytonia time…”)

IMG_5816NOPE, it’s not Claytonia time here, at least not really anymore. There were some plants around with buds, but most of the C. lanceolata var. peirsonii here has dispersed its seeds and are beginning to wither back to their underground tubers. We did not find any flowering — I guess the Doyles will have to come back again next year, or meet me somewhere northward in a few more weeks!

We did at least find some flowering Claytonia rubra there, just in the nick of time. It was time to send Jeff and Jane back to New York. Although they may not have gotten to see (much) flowering Claytonia, at least they got to see some flowering California!

Spectacular desert wildflower bloom in the Mojave desert near Piñon Hills, highway 138.

Spectacular wildflower bloom in the Mojave Desert near Piñon Hills, highway 138.

 

 

¡Holy frijoles! You are just too cute, and too close to home…

OK, so I might just have a new favorite Claytonia after my most recent trip into the desert in northwestern Nevada. Let me just tell you something — in the Desert Southwest, spring has sprung! Just like my collaborator at Eastern Washington University (Dr. Robin O’Quinn), I think I am falling in love with the tuberous perennial ‘Great Basin Spring Beauty’ (C. umbellata) — photographed here on March 21st, 2014.

IMG_5178IMG_5195IMG_5134As Stevie Wonder might say, isn’t she lovely?!

It gets better… Also photographed on March 21, 2014, below are some pictures of plants from another population of C. umbellata that occurs on a different substrate in another mountain range nearby in Nevada.

IMG_5221IMG_5227IMG_5230There’s something funny going on here, and I’m going to get to the bottom of it…

Question for readers out there: Who thinks the above plants look similar to the below plants from southern California? Just wonderin’ about evolutionary relationships 😉

cropped-2013-04-01-18-12-02.jpg

Claytonia Rocks!

So these plants are considered to be ‘geophytes’ because they have underground storage organs, but I find this so-called classification to be much more meaningful than that for the tuberous perennial Claytonia. In order to better understand this, let me break it down a little bit.

Phyte – Greek, generally referring to a plant.

Geo – Greek, generally referring to anything of or relating to the Earth.

2013-05-30 11.44.33Pictured here is the habitat of the typical variety for the Claytonia lanceolata complex, C. lanceolata sensu stricto. At least in northern California, this taxon is known only from soils derived from granitic rocks. The suggestion has been that as a generalist, C. lanceolata (as currently circumscribed) occurs in a variety of habitat types across its range and thus is highly polymorphic morphologically. Well, there are some interesting substrates in southern California within very close proximity where one can find members of C. “peirsonii” complex occurring in nearly equivalent niche space across different substrates… Wait a second, am I studying geology or botany?!

2013-04-20 09.57.32Because bragging about how awesome the San Bernardino Mountains are is my favorite thing in the world to do, I’d like to take this opportunity to point to some interesting Claytonia there that occur on sedimentary carbonate rocks on the north slope of Bertha Ridge. This is the ridge that separates Big Bear Valley to the south from Holcomb Valley to the north. This is where I first encountered plants that match the description of Claytonia lanceolata var. peirsonii Munz&Johnston, or any plant treated as Claytonia lanceolata in the Jepson Manual or Flora of North America, while I was working as a Rare Plant Technician for the USDA Forest Service on the San Bernardino National Forest. More pictures of these plants can be found on CalPhotos.

IMG_9508These plants, as mentioned previously, are ridiculously cute (see related articles below and cast your vote!). More importantly for this story, these plants occur on dolomite, which is a particular type of carbonate rock containing the mineral dolomite.

2013-04-20 12.17.49And boy-howdy are these rocky hills STEEP! Unfortunately, this is an aspect of the habitat that many of the tuberous perennial species of Claytonia appear to have conserved across lineages, making field work incredibly physically demanding when sites are remote. But what is my point, exactly?

2013-04-20 14.20.56Pictured here, approximately 7 air-km to the north, there exists another population of tuberous perennial Claytonia that is primarily associated with the same species (Pinus flexilis, P. monophylla and Juniperus) but otherwise occurs on a different kind of carbonate rock than the population at Bertha Ridge. This becomes significant when you look at the morphology of the plants here, which is inconsistent with the plants at the Bertha Ridge population just 7 air-km away.

2013-04-20 14.21.55Not only do the plants at this more northern locality on gray dolomite have pink nectary guides, in contrast to the yellow spots at the base of the petals on plants from Bertha Ridge, but cauline leaf shape appears also to be strikingly different between these two populations. This interesting case of inconsistency in overall morphology, coupled with signs of genetic divergence among these populations (see my most recent phylogeny here), has gotten me very excited about patterns of evolution in this group that is already well known for complex histories of hybridization and polyploidy

ClaytoniaRocksAlthough it is all C. lanceolata for now, soon enough we’ll make some sense out of it!

Claytonia rubra, what is that? pt. I

Possibly my favorite outgroup material, pictured here is Claytonia rubra, a widespread annual species that is a close relative of the group of tuberous perennials that I study. 2013-04-28 11.17.10

This species has been involved in a number of ’bouts’ of hybridization primarily with two other annual Claytonia (C. perfoliata and C. parviflora), making the identification of annual species in this group incredibly challenging. Polyploid lineages have been recognized as varieties for this species and others formerly treated as C. perfoliata sensu lato, creating what appears like a continuum of morphological variation in one ‘species’ resulting from recombination among three unique lineages (pictured below).

2013-04-28 11.34.01Why do they call it Claytonia rubra? Well, because it is REALLY RED on the abaxial side (bottom) of the leaves, a condition resulting from increased betalain production, aside from its darker green adaxial surfaces as seen in the first picture. Claytonia parviflora (left) with linear leaves and C. perfoliata (middle) with spatulate leaves are readily distinguished from C. rubra by this morphological character alone, but subtle floral features exist as well that can be used for this group, including petal shape.

2013-04-28 11.41.08Next spring, when you’re out hunting for melting patches of snow to see the pretty Claytonia that are in bloom next to them, be on the look out for ‘miner’s lettuce’ at slightly lower elevations than the tuberous perennials but still in areas of high moisture. Claytonia rubra is typically found in Mixed Conifer habitats, often in deep shade and at higher elevations than other members of the C. perfoliata sensu lato complex.

The C. perfoliata sensu lato complex (including C. rubra) is incredibly ruderal and can be found nearly anywhere in the montane habitats of California and the Southwest, making my choice to study the tuberous perennials seem a bit silly at times. Polyploidy seems to be intimately linked with the successful dispersal into new and disturbed habitats in this group, and it will be interesting to compare with the evolutionary patterns and relationships among the tuberous perennial Claytonia.